好房网

网站首页 二手房 > 综合生活 > 正文

今日更新正交矩阵的性质

2022-05-18 11:04:09 综合生活 来源:
导读 目前大家应该是对正交矩阵的性质比较感兴趣的,所以今天好房网小编CC就来为大家整理了一些关于正交矩阵的性质方面的相关知识来分享给大家

目前大家应该是对正交矩阵的性质比较感兴趣的,所以今天好房网小编CC就来为大家整理了一些关于正交矩阵的性质方面的相关知识来分享给大家,希望大家会喜欢哦。

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。

正交矩阵的性质

逆也是正交阵

对于一个正交矩阵来说,它的逆矩阵同样也是正交矩阵。

积也是正交阵

如果两个矩阵均为正交矩阵,那么它们的乘积也是正交矩阵。

行列式的值为正1或负1

任何正交矩阵的行列式是+1或−1对于置换矩阵,行列式是+1还是−1匹配置换是偶还是奇的标志,行列式是行的交替函数。

在复数上可以对角化

比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值1。

群性质

正交矩阵的逆是正交的,两个正交矩阵的积是正交的。事实上,所有n×n正交矩阵的集合满足群的所有公理。它是n(n−1)/2维的紧致李群,叫做正交群并指示为O(n)。

行列式为+1的正交矩阵形成了路径连通的子群指标为2的O(n)正规子群,叫做旋转的特殊正交群SO(n)。商群O(n)/SO(n)同构于O(1),带有依据行列式选择[+1]或[−1]的投影映射。


版权说明: 本文由用户上传,如有侵权请联系删除!


标签: