好房网

网站首页 二手房 > 综合生活 > 正文

如图$Rt\triangle(ABC$中$\angle ACB=90^{\circ}$$\angle BAC=30^{\circ}$$AB=4$分别以$AB$$BC$$AC$为边作正方形$ABED$$BCFK$$ACGH$再作$Rt\triangle PQR$使$\angle R=90^{\circ}$点$H$在边$QR$上点$D$$E$在边$PR$上点$G$$F$在边$PQ$上则$\triangle RPQ$的周长为___.","title_text":"如图$Rt\triangle ABC$中$\an

2022-08-09 00:47:58 综合生活 来源:
导读 想必现在有很多小伙伴对于如图,$Rt triangle ABC$中,$ angle ACB=90^{ circ}$,$ angle BAC=30^{ circ}$,$AB=4$,分别以$AB$、$BC$

想必现在有很多小伙伴对于如图,$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,$\angle BAC=30^{\circ}$,$AB=4$,分别以$AB$、$BC$、$AC$为边作正方形$ABED$、$BCFK$、$ACGH$,再作$Rt\triangle PQR$,使$\angle R=90^{\circ}$,点$H$在边$QR$上,点$D$、$E$在边$PR$上,点$G$、$F$在边$PQ$上,则$\triangle RPQ$的周长为___.","title_text":"如图,$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,$\angle BAC=30^{\circ}$,$AB=4$,分别以$AB$、$BC$、$AC$为边作正方形$ABED$、$BCFK$、$ACGH$,再作$Rt\triangle PQR$,使$\angle R=90^{\circ}$,点$H$在边$QR$上,点$D$、$E$在边$PR$上,点$G$、$F$在边$PQ$上,则$\triangle RPQ$的周长为___.方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如图,$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,$\angle BAC=30^{\circ}$,$AB=4$,分别以$AB$、$BC$、$AC$为边作正方形$ABED$、$BCFK$、$ACGH$,再作$Rt\triangle PQR$,使$\angle R=90^{\circ}$,点$H$在边$QR$上,点$D$、$E$在边$PR$上,点$G$、$F$在边$PQ$上,则$\triangle RPQ$的周长为___.","title_text":"如图,$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,$\angle BAC=30^{\circ}$,$AB=4$,分别以$AB$、$BC$、$AC$为边作正方形$ABED$、$BCFK$、$ACGH$,再作$Rt\triangle PQR$,使$\angle R=90^{\circ}$,点$H$在边$QR$上,点$D$、$E$在边$PR$上,点$G$、$F$在边$PQ$上,则$\triangle RPQ$的周长为___.方面的知识分享给大家,希望大家会喜欢哦。

1、延长$BA$交$QR$于点$M$,连接$AR$,$AP$.

2、在$triangle ABC$和$triangle GFC$中,$left{begin{array}{l}AC=GCangle ACB=angle GCFBC=FCend{array}right.$,

3、$therefore triangle ABC$≌$triangle GFCleft(SASright)$,

4、$therefore angle CGF=angle BAC=30^{circ}$,

5、$therefore HGQ=60^{circ}$.

6、$because angle HAC=angle BAD=90^{circ}$,

7、$therefore angle BAC+angle DAH=180^{circ}$.

8、又$because AD$∥$QR$,

9、$therefore angle RHA+angle DAH=180^{circ}$,

10、$therefore angle RHA=angle BAC=30^{circ}$,

11、$therefore angle QHG=60^{circ}$,

12、$therefore angle Q=angle QHG=angle QGH=60^{circ}$,

13、$therefore triangle QHG$是等边三角形,

14、$because AC=ABcdot cos 30^{circ}=2sqrt {3}$.

15、在$Rttriangle HMA$中,$HM=AHcdot sin 60^{circ}=3$,$AM=AHcdot cos 60^{circ}=sqrt {3}$.

16、在$Rttriangle AMR$中,$MR=AD=AB=4$

17、$therefore QR=2sqrt {3}+3+4=7+2sqrt {3}$,

18、$therefore PQ=2QR=14+4sqrt {3}$,$PR=sqrt {3}QR=6+7sqrt {3}$,

19、$therefore triangle RPQ$的周长$=QR+PQ+PR=27+13sqrt {3}$.

20、故答案为:$27+13sqrt {3}$.

本文到此结束,希望对大家有所帮助。


版权说明: 本文由用户上传,如有侵权请联系删除!


标签: